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[1] The outer zone radiation belt consists of energetic electrons drifting in closed orbits
encircling the Earth between �3 and 7 RE. Electron fluxes in the outer belt show a strong
correlation with solar and magnetospheric activity, generally increasing during
geomagnetic storms with associated high solar wind speeds, and increasing in the presence
of magnetospheric ULF waves in the Pc-5 frequency range. In this paper, we examine
the influence of Pc-5 ULF waves on energetic electrons drifting in an asymmetric,
compressed dipole and find that such particles may be efficiently accelerated through a
drift-resonant interaction with the waves. We find that the efficiency of this acceleration
increases with increasing magnetospheric distortion (such as may be attributed to
increased solar wind pressure associated with high solar wind speeds) and with increasing
ULF wave activity. A preponderance of ULF power in the dawn and dusk flanks is shown
to be consistent with the proposed acceleration mechanism. Under a continuum of wave
modes and frequencies, we find that the drift resonant acceleration process leads to
additional modes of radial diffusion in the outer belts, with timescales that may be
appropriate to those observed during geomagnetic storms. INDEX TERMS: 2720
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1. Introduction

[2] The Van Allen radiation belts are composed of
energetic ions and electrons, gradient-curvature drifting in
orbits encircling the Earth. The energetic ions comprising
the proton radiation belt are confined mainly to the inner
regions of the magnetosphere, inside distances of perhaps
2–3 Earth radii (RE) from the center of the Earth, and result
primarily from the decay of neutrons freed by cosmic rays
impinging on the upper atmosphere [Walt, 1996]. The
electron radiation belts, on the other hand, divide them-
selves into two distinct regions: an inner zone belt, extend-
ing from a few hundred kilometers above the surface of the
Earth to distances of 2–2.5 RE, and an outer zone popula-
tion of electrons, extending from �3 RE to somewhere
between 5 and 7 RE. In the outer zone, external contribu-

tions to the geomagnetic field begin to significantly alter the
field configuration from that of a simple dipole, with the
solar wind compressing and increasing the magnetic field
on the dayside, and ring and tail currents stretching and
distorting the nightside magnetic field. The ‘‘slot region’’
between the inner and outer zones is kept largely free of
trapped electrons through wave-particle interactions preva-
lent in this region [Kennel and Petschek, 1966]. The
radiation belts as a whole are largely field-aligned struc-
tures, with outer zone electrons extending approximately
±50� from the geomagnetic equator.
[3] Inner zone populations are observed to be largely

stable in time; however, electrons in the outer zone can
show substantial variation on a variety of timescales. In
particular, solar storms can have a profound effect on
energetic electron fluxes observed in the outer zone. For
example, in the sudden commencement phase of a storm,
induced electric fields caused by the compression of the
magnetosphere can impulsively inject solar and outer zone
electrons into the inner regions of the magnetosphere. This
was seen in the storm sudden commencement (SSC) of 24
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March 1991, which injected electrons inside the slot region
and formed a new radiation belt over the course of a few
minutes [Blake et al., 1992; Li et al., 1993]. In the initial
portion of the main phase of a magnetic storm, on the other
hand, energetic electron fluxes characteristically decrease in
the outer zone. This decrease can be attributed to the ‘‘Dst

effect,’’ whereby decreases in the magnetic field strength
resulting from the ring current buildup causes radiation belt
particles to move radially outward through conservation of
the third adiabatic invariant [Kim and Chan, 1997; Li et al.,
1997]. In the recovery phase of the storm, one might expect
the radiation belts to increase to their prestorm levels as the
Dst index increased toward zero. However, storm-time
energetic electron fluxes are often observed to increase
simultaneously throughout the outer zone by 1–2 orders
of magnitude over prestorm levels, on timescales ranging
from a few hours to 1–2 days [Baker et al., 1994b, 1998b].
In a study of three storms showing substantial electron flux
increases undertaken by McAdams and Reeves [2001], it
was found that recovering Dst could only account for 10–
20% of the poststorm electron flux increase. As the pene-
trating nature of the electron radiation can pose a consid-
erable threat to human activities in space, there has been a
particular interest in understanding the physics of these flux
increases [Wrenn, 1995; Baker et al., 1994a, 1998a].
[4] While the physics behind the outer zone flux varia-

tions, particularly the recovery phase increase of energetic
electron fluxes, is not yet well understood, several intrigu-
ing correlations between solar and magnetospheric phenom-
ena and the dynamics of the outer zone have been observed.
Paulikas and Blake [1979], Baker et al. [1997], and Li et al.
[1997] have all noted correlations between solar wind
velocity and outer zone electron fluxes. Further, a strong
correlation between ULF wave power in the Pc-5 frequency
range (2–7 mHz [see Jacobs et al., 1964]) and outer zone
fluxes has been observed. For example, in a comparison of
the 27 May 1996 magnetic cloud event with that of 10–11
January 1997, Baker et al. [1998b] found that large-ampli-
tude oscillations in the Pc-5 frequency range were associ-
ated with the relativistic electron event of the 1997 storm,
while the 1996 storm, which did not exhibit extensive Pc-5
activity, had no comparable increase in electron fluxes.
Even more compelling, Rostoker et al. [1998] observed a
strong correlation between outer zone fluxes and ULF
activity over a 90 day period, with large increases in wave
power preceding increases in geosynchronous electron
fluxes by 1–2 days. Likewise, Mathie and Mann [2000a]
studied a 6 month period in 1995 and found a strong
association between geosynchronous electron fluxes and
ULF power. Finally, confirming the link between solar wind
speed, ULF wave activity, and energetic electron fluxes,
O’Brien et al. [2001] used a cross correlation to determine
which parameters in the solar wind and magnetosphere
might most influence energetic electron fluxes. They found
sustained solar wind speeds in excess of 450 km/s to be a
strong external indicator of increasing magnetospheric elec-
tron fluxes, and long-duration Pc-5 activity during the
recovery phase of a storm to be the best discriminator
between those storms that produced relativistic electrons
and those that did not.
[5] Ground observations suggest that Pc-5 ULF oscilla-

tions are most prevalent in the dawn sector of the magneto-

sphere [Anderson et al., 1990; Ruohoniemi et al., 1991;
Glassmeier and Stellmacher, 2000], and have a higher
occurrence rate during periods of high solar wind speed
[Kokubun et al., 1989; Engebretson et al., 1998]. The
source of wave power driving Pc-5 oscillations has been
speculated to be either through Kelvin-Helmholtz waves
generated by the flow of the solar wind past the magneto-
spheric boundary surface [Cahill and Winckler, 1992; Mann
et al., 1999], or through variations in the solar wind pressure
propagating as wave energy into the magnetosphere [Lysak
and Lee, 1992]. In a study examining phase velocities of
magnetospheric ULF waves, Mathie and Mann [2000b]
found that morning-sector waves during high speed solar
wind events (vsw ’ 500 km/s) were likely driven by
magnetopause flow instabilities, whereas during lower solar
wind velocities observed ULF pulsations were likely a
result of the impulsive action of the solar wind.
[6] A link between wave activity and particle dynamics is

provided via radial diffusion theory. Here stochastic varia-
tions in the electric and magnetic fields guiding the trapped
particle’s drift result in diffusion of particles across drift
shells through violation of the third adiabatic invariant
[Fälthammar, 1965, 1966, 1968; Cornwall, 1968; Schulz
and Eviatar, 1969; Schulz and Lanzerotti, 1974]. If the first
adiabatic invariant is conserved during this process, elec-
trons will change energy as they move into regions of
differing magnetic field strength. The spatial structure and
energy spectrum of the radiation belts is consistent with
radial diffusion [Lyons and Thorne, 1973]; however, time-
scales classically cited for radial diffusion processes are too
slow to account for the storm time variations observed in the
outer belts [Walt, 1996]. Li et al. [2001], on the other hand,
found that they could accurately reproduce the time-history
of geosynchronous electron fluxes using an ad hoc diffusion
coefficient (based largely on solar wind velocity) to trans-
port particles to geosynchronous from beyond 11 RE.
[7] A number of other theories have been proposed to

explain the connection between Pc-5 ULF waves and
energetic electron dynamics. Liu et al. [1999] suggested
that electron acceleration occurs as a result of magnetic
pumping via pitch angle scattering and flux tube motion
associated with ULF waves. Summers and Ma [2000]
examined acceleration via a cyclotron interaction between
trapped electrons and the compressional component of fast-
mode ULF waves. Assuming a source of rapid pitch angle
scattering to maintain an isotropic distribution, Summers
and Ma [2000] predicted electron acceleration on timescales
of a few hours.
[8] Using 3d, global MHD simulations of the magneto-

sphere driven by solar wind parameters measured by the
WIND spacecraft at L1 for the 10–11 January 1997 CME-
magnetic cloud event, Hudson et al. [1999, 2000] modeled
the evolution of relativistic electron fluxes in the equatorial
plane using the MHD data as input to a guiding center test
particle code. They proposed a drift-resonant acceleration
mechanism resulting from ULF wave activity present in the
simulations and the radial asymmetries seen in the outer
zone magnetic field. This work was quantified by Elkington
et al. [1999] for the case of toroidal-mode field line
resonances. The purpose of this paper is to extend the work
initiated by Elkington et al. [1999] to poloidal field line
resonances and time-dependent convection electric fields,
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and to show how such drift-resonant acceleration can lead to
new modes of radial diffusion in the outer zone, with
timescales commensurate with those often observed during
geomagnetic storms.

2. Drift Resonant Acceleration

[9] We investigate the effects of ULF waves on energetic
electron dynamics by tracking the guiding-center motion of
equatorial particles moving under the influence of model
electric and magnetic fields. Although these simulations
lack off-equatorial dynamics, and are not capable of model-
ing those interactions which break the first adiabatic invar-
iant, such simulations have shown themselves capable of
capturing a broad range of physical processes and interac-
tions relevant to radiation belt electrons [e.g., Li et al., 1993,
1998; Hudson et al., 1997, 2001; Elkington et al., 2002].
[10] Here we use the same magnetic field model as that of

Elkington et al. [1999], namely

B r;fð Þ ¼ B0RE
3

r3
þ b1 1þ b2 cosfð Þ: ð1Þ

The first term represents a dipole magnetic field of strength
B0 at the surface of the Earth, while the second term models
the compression of the field resulting from solar wind
dynamic pressure. Azimuthal angle f is taken to be zero at
local noon and increasing in a counter-clockwise sense, and
constants b1 and b2 are selected based on measured
magnetic field values. An equatorial particle drifting in
such a field will drift along contours of constant magnetic
field strength, characterized by a parameter

L ¼ R3
E

r3
þ b1b2B0

cos
f

� ��1=3

; ð2Þ

discussed further in Appendix A. L is physically analogous
to the third-adiabat conserving Roederer L, L* = �2pB0/�
RE [Roederer, 1970], where � is the magnetic flux enclosed
in a drift path.
[11] The electric fields are modeled using

E r;f; tð Þ ¼ E0 r;fð Þ þ
X1

m¼0
dErm sin mf
 wt þ xrmð Þr̂

þ
X1

m¼0
dEfm sin mf
 wt þ xfm

� �
F̂; ð3Þ

where the first term represents any constant background
magnetospheric convection fields, while the following
terms are a superposition of global toroidal and poloidal
field line resonances in the equatorial plane. Here m
represents the azimuthal mode number of the ULF wave, w
the frequency, and dErm(dEfm) and xrm(xfm) the amplitude
and phase lag, respectively, of the toroidal (poloidal) mode
m. Waves moving in the same direction as the eastward
gradient drifting electrons will be referred to as propagating
waves; those moving in the opposite direction are referred
to as counterpropagating. Note that for m = 1 and a standing
wave consisting of both propagating and counterpropagat-
ing waves of equal amplitude dE and zero phase x, the time-
dependent part of equation (3) can also describe a time
varying, dawn-dusk convection electric field varying with
amplitude 2dE and frequency w.

[12] The energy gained by an electron moving adiabati-
cally in an electric field is given by

dW

dt
¼ qE � vd þM

@B

@t
; ð4Þ

where vd is the total particle drift velocity [Northrop, 1963].
The second term in equation (4) is zero in the equatorial
plane for the fundamental toroidal mode studied by
Elkington et al. [1999], since the magnetic perturbation
dBf has a node at the equator. The dominant radial
component of the fundamental poloidal mode, dBr, also
has a node at the equator, while the compressional dBk
component is smaller in amplitude for low kinetic to
magnetic pressure ratio (plasma beta) characteristic of the
outer zone electron region; thus the second term in equation
(4) is neglected in this study.

2.1. Compressed Dipole Resonance: Toroidal Mode

[13] The effect of a global, monochromatic toroidal-mode
field line resonance on an energetic electron was discussed
in some detail by Elkington et al. [1999]; a brief review will
be given here. The proposed acceleration mechanism is
illustrated in Figure 1. Here an equatorially mirroring
electron in a compressed dipole interacts with a global
m = 2 toroidal-mode wave of frequency w. An electron
starting at dusk and moving with a drift frequency wd = w
would first see a positive radial electric field while under-
going negative radial motion, and half a drift period later a
negative electric field while moving radially outward. As
indicated in Figure 1b, the resulting product Erdr is there-
fore negative over the orbit of the electron, leading to a net

Figure 1. (a) Sketch of an electron drift path in a
compressed dipole, with electric fields indicated for a
toroidal oscillation in an m = 2 mode. (b) Radial drift
velocity, radial electric field, and rate of change of energy
seen by a resonant particle starting at local dawn.
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energy increase via equation (4). For arbitrary m, the
resonance condition for drift-resonant acceleration is given
by (Appendix B)

w� m
 1ð Þwd ¼ 0: ð5Þ

[14] To verify the resonant nature of this acceleration,
particles of different initial energies (and hence different
drift frequencies) can be started in a single specified mode,
and maximum energy gain recorded. An example is shown
in Figure 2a for a 4 mHz, 3 mV/m field in an m = 2 mode,
with no convection electric field. All electrons are started at
local dusk; those with energies near E1 (wd = w) see the
greatest increase in energy. Also, consistent with equation
(5), a second peak is clearly evident where wd = w/3, at
energy E3. The range of electron energies over which an
electron will experience resonant acceleration was given by
Elkington et al. [1999], and is developed in Appendix B.
[15] Phase space plots of the particle motion provide a

useful way of examining the behavior of a driven system
[e.g., Lichtenberg and Lieberman, 1983]. Figure 2b shows a
Poincaré plot consisting of the particle energy and azimuthal
position recorded at increments of one wave period; the
resulting plot shows the expected resonant island centered at
E1 � 3.14 MeV, and three smaller islands at E3 around 850
keV, consistent with equations (5) and (B6). The dropout in
energy gain seen at E1 in panel (a) is a result of the saddle
point at f0 = 270 degrees in panel (b). For the electrons and
fields used to generate panels (a) and (b), and a radial
displacement dr = 0.23 RE from equation (A3), the resonant
width predicted by equation (B6) is �0.17 MeV, in good
agreement with the maximum energy gain in Figure 2a and
primary island width in Figure 2b.
[16] The effect of a constant, dawn-dusk convection

electric field E0ŷ on an electron’s phase plane dynamics is
depicted in Figure 2c for a single particle beginning at a
point outside the resonant separatrix. The uniform convec-
tion field transforms the primary resonant center in the
reduced phase space of panel (b) into a feature resembling a
stable attractor. An important implication of this result is
that particles may be adiabatically accelerated from energies
outside the resonance described in equations (5) and (B6).
In principle it is possible to adiabatically accelerate
electrons with 10–100 keV energies at the magnetopause
to MeV energies in the inner magnetosphere, using drift-
resonant acceleration and a strong convection electric field.
For example, an electron with an initial energy of 80 keV at
10 RE at local noon would have an energy around 200 keV
at geosynchronous, and exceeding 1.1 MeV at 3 RE.
[17] A second implication of the effect of the convection

field is that it is possible to accelerate particles in bulk using
resonance with toroidal waves. That is, without the effect of
the convection fields, particles on one side of the resonance
would gain energy while particles on the other side of the
resonance would lose energy, resulting in a bulk acceler-
ation limited to that arising from energy asymmetries in the
resonant island. The addition of the convection electric field
makes it possible to accelerate particles regardless of their
initial phase.

2.2. Compressed Dipole Resonance: Poloidal Mode

[18] The nature of the resonant interaction of an electron
with a poloidal mode oscillation is indicated in Figure 3.

Here a resonant electron will see a positive Ef in the
midnight sector and a negative Ef in the noon sector, where
the sign of Ef is determined in the usual right-hand sense.
The change in energy over the course of the electron’s
motion is again determined by equation (4), with the second
term neglected for low plasma beta. In a purely dipolar
field, one would expect the energy gained at local midnight,
where vd and Ef are antiparallel, to exactly balance the
energy lost at local noon, where vd and Ef are parallel,
resulting in no net increase in the electron’s energy over the
course of its motion unless pitch angle scattering or some
other first invariant-breaking mechanism is invoked [e.g.,
Liu et al., 1999; Summers and Ma, 2000]. However, in a
distorted dipole, where the azimuthal drift velocity is given
by equation (A7), the energy gained in the midnight sector
will exceed that lost in the noon sector, resulting in a net
energy increase over the course of a drift orbit. This
mechanism leads to the same w = (m ± 1)wd resonance
condition as found in the toroidal situation.
[19] The Poincaré plots corresponding to a poloidally

resonant electron are indicated in Figure 4, for the same
particle first adiabatic invariant and the same field frequency,
magnitude, and mode structure as used in Figure 2. The
primary resonant center shows symmetry about the noon-
midnight line, as might be expected from Figure 3.

Figure 2. (a) Energy gained by electrons with different
initial energies in a 3 mV/m, m = 2 toroidal electric field
oscillating at 4 mHz, each particle beginning at 5.0 RE at
dusk local time. E1 and E3 indicate the energies of electrons
with wd = w and wd = w/3, respectively. (b) Poincaré map
showing the phase plane dynamics of particles with uniform
first adiabatic invariant, moving in the same purely toroidal-
mode fields as (a). (c) Poincaré map of a single particle
starting at local dusk at 2.5 MeV moving with the same first
adiabatic invariant and toroidal fields as above, with the
addition of a uniform dawn-dusk convection electric field of
5 mV/m.
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[20] The effects of a convection electric field is indicated
in Figure 4b, where three particles have been started with
different initial conditions and allowed to evolve for iden-
tical periods of time. In contrast to the toroidal mode,
convection fields have the effect of changing the resonant
islands of (Figure 4a) into unstable centers. Those electrons
beginning at locations above the resonant separatrix gain
energy, while those beginning below the separatrix tend to
lose energy. For those electrons with initial locations inside
the resonant island, the question of whether or not they
ultimately gain or lose energy depends sensitively on both
initial energy and azimuthal location.
[21] While the poloidal mode is capable of accelerating

particles, equation (4) and the fact that the drift velocity
decreases with the relativistic correction factor g imply that
the electrons above the separatrix in Figure 4b will gain
energy more slowly than electrons below the separatrix will
lose energy. For electron distributions exhibiting a steep
power law in energy W, such as is commonly observed in
the outer radiation belts, this asymmetry should lead to a net
decrease in energy of the electrons as a whole. This result
suggests that a necessary condition for bulk energization
under the influence of a single-frequency wave is that there
be more power in the toroidal mode than the poloidal mode.
This suggestion is consistent with MHD simulations of the
January 1997 magnetic storm [Hudson et al., 2000], while
analysis of magnetometer measurements from the Equator-S
spacecraft for the March 1998 storm [Nakamura et al.,
2002] show that both polarizations are present over a range

of frequencies (0.5–10 mHz) on the dawn side of the
magnetosphere between L = 5–10, near the equatorial
plane, where the measurements were made. Statistical
studies of occurrence properties will be described later.

2.3. Symmetric Resonance

[22] While the convection electric field has an important
and interesting effect on both toroidal and poloidal field line
resonances, the relative field orientations and axes of
symmetry of Figures 1 and 3 suggest that ULF variations
in the global dawn-dusk convection electric field itself
might serve as an efficient acceleration mechanism in the
absence of either toroidal or poloidal oscillations. The
acceleration mechanism is indicated in Figure 5, depicting
an electron moving in a symmetric (dipole) magnetic field
under the influence of a dawn-dusk convection electric field
varying with frequency w = mwd. The phase-plane dynamics
corresponding to this case are indicated in Figure 6, where
5 mV/m fields with superposed 4 mHz, 3 mV/m oscillations
interact with electrons of the same first adiabatic invariant
as in Figures 2 and 4. As can be seen by comparing the
resonant interaction width of the oscillating convection
electric field with those of the toroidal and poloidal modes,
a coherent time-dependent convection electric field can
potentially provide much greater energization for the same
amplitude of oscillation.
[23] A source of ULF power in the convection electric

field might arise via direct coupling from the solar wind.
Dungey [1961] showed that polar convection, the iono-
spheric manifestation of magnetospheric convection, could
be explained by invoking magnetic reconnection with the
interplanetary magnetic field at the magnetopause. Subse-
quent work has shown that magnetospheric convection

Figure 3. (a) Sketch of an electron drift path in a
compressed dipole, with electric fields seen by an electron
resonant with poloidal-mode oscillations indicated at noon
and midnight. The differing drift velocities at noon and
midnight are qualitatively indicated by the vector length vd
at each location. (b) Azimuthal drift velocity, electric field,
and rate of change of energy seen by a poloidally resonant
particle starting at local midnight.

Figure 4. (a) Poincaré map showing the phase plane
dynamics of particles with uniform first adiabatic invariant,
moving in the same 3 mV/m, 4 mHz, m = 2 fields as Figure
2, but in a poloidal mode. (b) Poincaré map showing
particle dynamics with the same first adiabatic invariant and
fields as (a), but with the addition of a convection electric
field of 5 mV/m. Asterisks indicate the initial azimuth and
energy of individual particles.
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tracks time variations in the IMF [Birmingham, 1969;
Nishida and Maezawa, 1971; Saunders et al., 1992], and
possibly at � minute timescales [Ridley et al., 1997, 1998;
Ruohoniemi and Greenwald, 1998]. The solar wind cou-
pling parameter suggested by Perreault and Akasofu [1978],
of the form

e ¼ vswB
2
sw‘

2
0 sin

4 q=2ð Þ; ð6Þ

estimates the rate at which energy is transmitted from the
Poynting flux in the solar wind into the magnetosphere via
magnetic reconnection at the magnetopause. Here vsw is the
solar wind velocity, Bsw the magnitude of the IMF, q the
‘‘clock angle’’ between the IMF and the Earth’s magnetic
dipole, and ‘0 = 7 RE. Variations in e, therefore, might be
expected to translate directly into variations in the convec-
tion electric field.
[24] Time-dependent convection electric fields at a single

frequency, in contrast to toroidal and poloidal oscillations,
are not capable of accelerating electrons in bulk as the
resonant centers show no stable or unstable characteristics.
That is, for electrons evenly distributed in azimuth on a
shell of constant L, one would expect that for every electron
in phase with the wave and gaining energy there would be a
corresponding electron out of phase with the wave and
losing energy, resulting in no net increase in energy when
integrated over all electrons in that shell. However, in the
case of multiple ULF wave frequencies, the greatly
increased resonant interaction width results in the potential

for very efficient acceleration through the resonant diffusion
process, as outlined in section 4.

3. Local Time and Propagation Effects

[25] In the preceding examples, the test particles inter-
acted with a single propagating mode acting globally over
the course of the electron orbit. However, statistical studies
by ground-based magnetometers of Pc-5 waves indicate that
the preponderance of ULF wave activity occurs on the
flanks, with perhaps more activity in the dawn sector
[Anderson et al., 1990; Ruohoniemi et al., 1991]. Further,
if the ULF wave activity is a result of flow instabilities
along the flanks [Cahill and Winckler, 1992; Mann et al.,
1999; Mathie and Mann, 2000b], one would expect the
wave power to be directed generally tailward, i.e., prop-
agating eastward in the dusk sector and westward in the
dawn sector. How would electron acceleration be affected in
each case?
[26] The answer is indicated in Figure 7, where we

schematically show the drift velocity of an energetic elec-
tron, along with the electric fields seen by the particle for
eastward propagating (dotted line) and westward propagat-
ing (dashed line) waves. In the case of a global westward
propagating wave, opposite the direction of electron drift,
the net energization seen over the course of the orbit clearly
integrates to zero (panel c). However, if the wave activity is
assumed to occur only along the flanks (solid lines), we see
that we can in fact energize the particle, through interaction
with the eastward propagating mode at dusk and westward
propagating mode at dawn.
[27] Glassmeier and Stellmacher [2000] note that satellite

observations show Pc-5 activity to be symmetrically dis-
tributed, and suggest that the asymmetry perceived by
ground-based measurements is a result of ionospheric
screening. However, global occurrence of ULF waves does
not seem to be a requisite factor in the drift-resonant
acceleration of electrons, and, in the case of westward

Figure 5. (a) Sketch of an electron drift path in a
symmetric dipole, with electric fields indicated for an
m = 1 standing oscillation corresponding to a time-varying
dawn-dusk convection electric field. (b) Drift velocity,
azimuthal electric field, and rate of change of energy seen
by a resonant electron.

Figure 6. Poincaré map showing the phase plane
dynamics of particles with the same first adiabatic invariant
as in Figures 2 and 4, but under the influence of a standing
m = 1 oscillation corresponding to a time-dependent
convection electric field. The amplitude of the convective
field is 5 mV/m with superposed 4 mHz oscillations of
3 mV/m.
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propagating ULF waves, a local time asymmetry is in fact
required for energization to occur.

4. Multiple Frequencies: Radial Diffusion

[28] The previous sections dealt with the dynamics of
electrons moving under the influence of a monochromatic
oscillation in a single mode. While there are instances where
this is observed to be largely the case, as in the period
around 1100 UT on 10 January 1997 [Hudson et al., 1999],
one would, in general, expect a superposition of global
modes and frequencies to exist simultaneously. This section
deals with the effects of multiple ULF frequencies on global
electron dynamics.

4.1. Radial Diffusion in a Compressed Dipole

[29] Figure 8 shows the effect of two toroidal-mode
waves of differing frequencies on the phase-plane dynamics
of electrons conserving their first invariant. As indicated in
(Figure 8a), when the boundaries of the resonant islands
begin to overlap, the motion of the electrons becomes
chaotic in phase space. This leads to stochastic diffusion
in energy, and, through conservation of the first adiabatic
invariant, diffusion in L. (Figure 8b) shows the fully
stochastic motion of electrons moving under the influence
of two waves with a slightly smaller frequency separation
than in (Figure 8a). According to the Chirikov overlap
criterion [Chirikov, 1979], this transition to fully diffusive
motion will occur when the sum of the half-widths (B6) of
the two islands, calculated independently, just equals the
distance between the resonances. However, numerical
results indicate that the onset of stochastic motion will
actually occur when the ratio of the sum of the island
widths to their separation distance is approximately 2/3, due
to the interaction of higher-order resonances [Lichtenberg
and Lieberman, 1983].
[30] The diffusion coefficient, DWW, corresponding to the

particle diffusion in energy space, will here be defined by

DWW � h �Wð Þ2i
2t

; ð7Þ

where the term in angle brackets denotes the ensemble
average deviation in energy taken over a time t � Td, the
particle drift period [see, e.g., Schulz and Lanzerotti, 1974].
The functional dependence of this diffusion can be
calculated as follows. For a continuum of purely toroidal
waves, an approximate form for the energy diffusion can be
obtained by using the maximum possible energy gained
over the course of a drift orbit as a step-size for a random
walk in energy space. That is,

D
tð Þ
WW � e2dE2

r dr
2

2Td
; ð8Þ

where the superscript ‘‘(t)’’ signifies resonant diffusion due
to interaction with toroidal-mode waves. Using the radial
displacement dr given by equation (A4) for an asymmetric
(compressed) dipole background field, and the unperturbed
drift period, given by equation (A6) with b1, b2 = 0, we find
a functional form for DWW at constant first adiabatic
invariant, M of

D
tð Þ
WW � 2

3p
eMc

g
L6 b1b2

B0

� �2

P wm
1ð Þ; ð9Þ

where P(wm±1) is the power in the electric field spectrum in
the range of frequencies interacting with the ‘‘m ± 1’’ drift
resonance of the particle in question. It should be noted that,
in addition to the radial dependence L6, the rate of diffusion
increases with the square of the radial distortion, indicated
by the b1b2/B0 term, and exhibits an energy dependence
through the relativistic correction factor g. At constant M,
the rate of radial diffusion will scale directly with the rate of
energy diffusion. The corresponding radial diffusion
coefficient can be found by recalling that, in the relativistic

Figure 7. Electron dynamics for an electron initially at
dawn moving in a compressed dipole under the influence of
eastward propagating (dotted line) and westward propagat-
ing electric fields (dashed line). The solid lines in panels (b)
and (c) indicate the electric field and energy change for an
electron seeing only eastward propagating waves in the
dusk sector and westward propagating waves in the dawn
sector, corresponding to tailward-directed Kelvin-Helmholtz
waves.

Figure 8. (a) Phase-plane dynamics of 0.0345 MeV/nT
electrons under the influence of two toroidal-mode waves,
at 1.85 and 2.15 mHz, showing the onset of diffusive
behavior as the resonant islands begin to overlap. (b) Phase-
plane dynamics of the same electrons under the influence of
1.90 and 2.10 mHz waves, showing fully diffusive behavior
in the resonant overlap region.
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limit, W � L�3/2 [e.g., Hudson et al., 1997], so that dW �
L�5/2dL, and

D
tð Þ
LL � h �Lð Þ2i

2t
/ M

g
L11 b1b2

B0

� �2

P wm
1ð Þ: ð10Þ

Thus, for P independent of L, the rate of radial diffusion
due to interaction with a spectrum of global, toroidal-mode
ULF waves might be expected to show an L11 dependence.
[31] The functional form of the resonant diffusion due to

interaction with a spectrum of poloidal-mode waves in an
asymmetric (compressed) dipole background field may be
found in a similar fashion. From equation (4), we find an
approximate expression for the maximum energy gain over
a drift orbit of �W ’ 2edEfdvTd, where dv is given by
equation (A10). The energy diffusion (7) can thus be written

D
pð Þ
WW � 128p

3

eMc

g
L6 b1b2

B0

� �2

P wm
1ð Þ; ð11Þ

and the radial diffusion due to poloidal interaction is
likewise

D
pð Þ

LL / M

g
L11 b1b2

B0

� �2

P wm
1ð Þ: ð12Þ

We see that asymmetric diffusion due to the poloidal mode
exhibits the same functional form as that due to the toroidal
mode. However, comparison of equations (9) and (11)
suggests that poloidal diffusion is likely to be substantially
more efficient than toroidal diffusion because of the larger
coefficient in (11).
[32] Previous theoretical treatments of trapped particle

diffusion have assumed stochastic variations in either the
magnetic or electric field, occurring on drift-period time-
scales, which violate the third adiabatic invariant � while
conserving M and J. These treatments can be broadly
categorized as either magnetic diffusion [Fälthammar,
1968; Schulz and Eviatar, 1969] or electric diffusion [Corn-
wall, 1968; Fälthammar, 1965, 1966, 1968; Birmingham,
1969]. A complete theoretical treatment of each is outlined
by Schulz and Lanzerotti [1974]. The magnetic diffusion
coefficient, DLL

(m)
, is usually written for equatorial electrons

as

D
mð Þ
LL ¼ 2w2

d

5B2

21B1B0

� �2

L10
RE

RS

� �2

PBz
wdð Þ; ð13Þ

where B1, B2, and RS are coefficients used in the Mead
magnetospheric model [Mead, 1964] assumed in this
analysis, and PBz

is the spectral density of magnetic
disturbances at the drift frequency of the trapped particles.
The energy dependence of the diffusion coefficient is
contained explicitly in the wd term and implicitly in the
assumed form of PBz

(wd). If one assumes the disturbance
rises quickly and decays slowly on the timescale of the drift
of the particle, then PBz

/ wd
�2, so that equation (13) is

independent of energy [Schulz and Lanzerotti, 1974]. Under
this assumption, the diffusion coefficient reduces to the
simple form DLL

(m)
= D0

(m)
L10.

[33] A similar analysis corresponding to electric field
fluctuations results in a diffusion coefficient of the form

D
eð Þ
LL ¼ 2

c

4REB0

� �2

L6
X
m

m2Pm;e mwdð Þ; ð14Þ

where here the energy dependence arises in the assumed or
measured form of Pe, the spectral power of electric field
fluctuations at the drift frequency wd. It should be noted that
the analysis resulting in this form assumes a symmetric
dipole magnetic field and only considers the effect of
azimuthal electric fields. Under these conditions, we refer to
the diffusion as the symmetric mode of diffusion. For the
special case of m = 1, corresponding to the convection
electric field variations discussed in section 2.3, the
resulting diffusion coefficient is

D
eð Þ
LL ¼ 2

c

4REB0

� �2

L6Pe wdð Þ; ð15Þ

This is the same result arrived at by Cornwall [1968],
Fälthammar [1968], and Birmingham [1969], and other
early researchers considering diffusion of trapped energetic
particles resulting from convection electric field variations.
For the special case of electric field impulses that are again
assumed to rise quickly with amplitude �E and decay
exponentially with e-folding time t � 2p/wd, the spectral
power falls as wd

�2 and equation (15) takes the form

D
eð Þ
LL ¼ 4w2

d

eRE

24B0

� �2

L10
g

M

� �2 t2=Tð Þ
P

�Eð Þ2

1þ w2
dt2

ð16Þ

where �(�E)2 is the sum of the squares of all sudden
electric field fluctuations occurring in a time interval T � t
[Schulz and Lanzerotti, 1974].

4.2. Empirical Determination of DLL

[34] Given the variety of forms exhibited by equations
(13)–(16) and the range of assumptions involved in each
form, there has been considerable effort to determine
diffusion rates based on observational evidence, using a
number of different techniques. A summary of a few of
these results is indicated in Table 1; more extensive
compilations can be found in the studies by Lanzerotti et
al. [1970], Tomassian et al. [1972], Holzworth and Mozer
[1979], and Riley and Wolf [1992], and elsewhere. Two of
the works listed in the table, Lanzerotti and Morgan [1973]
and Holzworth and Mozer [1979], assumed that diffusion
rates were correctly given by equation (13) or (15) and used
measured magnetic and electric field spectra to arrive at the
relevant diffusion coefficients. The remainder of those
listed in the table arrived at diffusion rates without an
assumed L-dependence.
[35] The characteristic timescales exhibited in Table 1

range from �1 day at L = 6 to several years for electrons in
the inner belt. Except in the case of Lanzerotti and Morgan
[1973], who found that the diffusion coefficient at L = 4
could vary by orders of magnitude with magnetic activity,
the observations used in these analyses were generally made
during quiet geomagnetic periods. Radial diffusion calcu-
lations carried out by Selesnick and Blake [2000] indicate
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that the diffusion coefficient can vary by at least a factor of
5 during disturbed geomagnetic conditions, suggesting that
observed diffusive timescales at L = 6 can be as low as a few
hours during storms.
[36] Two of the works listed in Table 1, Newkirk and Walt

[1968b] and Selesnick et al. [1997], made an attempt to
determine the radial dependence of outer zone diffusion
coefficients based on particle measurements. The approach
used by Selesnick et al. [1997], for example, examined
electron dynamics over a 3-month period in 1996. Assum-
ing a radial diffusion coefficient of form DLL = D0(L/4)

n and
a characteristic particle lifetime of form t = t0(L/4)

�m, they
were able to fit observations from three clear electron
injections to a time-dependent radial diffusion equation
with losses [Schulz and Lanzerotti, 1974] and deduce a
radial diffusion coefficient varying as L(11.7±1.3), where the
error bars were based on statistical rather than systematic
considerations. Newkirk and Walt [1968b] similarly found a
radial diffusion coefficient of L(10±1). The L11 dependence
of diffusion in a compressed dipole indicated by equations
(10) and (12) is consistent with each of these observations.

4.3. Characteristic Timescales

[37] (Figures 9a–9c) shows the relative effectiveness of
the w = mwd and (m � 1)wd or (m + 1)wd forms of diffusion
for azimuthal electric field fluctuations. In each case, 360
particles were distributed evenly in azimuth at a constant
L0 = 6.6, and with an initial energy of W0 = 1 MeV. They
were then allowed to interact with global m = 2 oscillations
in a range of frequencies designed to excite one of the three
resonant modes, w = (m � 1)wd, w = mwd, or w = (m + 1)wd,
and the position and energy was recorded as a function of
time. Here a symmetric magnetic field of dipole strength
B0 = 27,500 nTwas used, and the parameters b1 and b2 were
selected based on the noon and midnight field strengths at
6.6 RE predicted by the Tsyganenko and Stern [1996]
magnetic field model for magnetospheric conditions corre-
sponding to the recovery phase of the 24–26 September
1998 magnetic storm. The simulation domain was selected
to be L = L0 ± 1; those particles drifting beyond this domain
were removed from the simulation. The range of frequen-
cies used in each case were picked to excite the chosen
resonant mode over the entire computational domain, with-
out frequency components capable of exciting another
resonance for any electron still within the computational
domain. The frequency spectrum was chosen to be a flat
profile of dEr,f = 0.1 mV/m at frequency intervals of

0.1 mHz, for a constant power spectral density (PSD) of
P = dE2/2df = 5 � 10�5 V2m�2Hz�1, on the order of that
commonly seen in MHD simulations of the storm-time
magnetosphere [Hudson et al., 2000]. The corresponding
RMS wave amplitude exciting each individual mode,
ERMS ¼

ffiffiffiffiffiffiffiffiffiffi
P�f

p
, is about 0.3 mV/m over each 2 mHz

interval, and 0.56 mV/m over the 0.5–6.7 mHz frequency
interval. This is consistent with the electric field RMS wave
amplitudes observed during moderately disturbed geomag-
netic conditions [Lyons and Thorne, 1973; Lyons and
Schulz, 1989; Brautigam and Albert, 2000].
[38] In the left-hand column of Figure 9, the mean square

deviation h(L � L0)
2i was plotted as a function of time for

each resonant mode. A linear least squaress fit was applied
to the time series of particle spread, and the slope of the fit
line was used to calculate the diffusion coefficient via the
corresponding equation (10) for the poloidal mode, DLL

(p) �
h(�L)2i/2t. In the right-hand column the particles were
sorted and binned by jL � L0j after one hour of simulation
time. A gaussian was fit to the resulting distribution, and a
second numerical diffusion coefficient was calculated based
on the half-maximum width of the gaussian fit.
[39] Panel (a) of Figure 9 shows the diffusion of particles

moving under the influence of purely azimuthal electric
fields in the compressed dipole field representative of the
assumptions leading to equation (12) for the (m � 1)
mode. For particles beginning at L0 = 6 and W0 =
1 MeV in the specified fields, and adiabatically interacting
with a global m = 2 mode within the simulation domain,
the range of frequencies between 0.5 and 2.5 mHz will
excite the (m � 1) mode. The diffusion coefficient calcu-
lated in this case is DLL � 7.5 � 10�3 h�1, corresponding
to a diffusion timescale tLL � 134 hours, on the order of
5–6 days.
[40] In panel (b) we show the diffusion corresponding to

the w = mwd resonant mode, as might be found from
equation (14). Here the range of frequencies chosen was
between 2.5 and 4.5 mHz. We find an increased rate of
radial transport over the (m � 1) mode, with diffusion
timescales on the order of 46 h.
[41] Panel (c) of Figure 9 shows the (m + 1) diffusion

mode, with corresponding wave frequencies between 4.7
and 6.7 mHz. The diffusion rates here are comparable to
those of the symmetric mode, panel (b), on the order of two
days.
[42] Finally, in panel (d), we allow the particles to interact

with waves in the frequency range 0.5–6.7 mHz. This range

Table 1. Examples of Empirically Determined Radial Diffusion Coefficients

DLL, day
�1 L W or M Range Reference

2.0 � 10�7 L = 1.20 W >1.6 MeV Newkirk and Walt [1968a]
4.0 � 10�6 L = 1.16
10�8L(10±1)a 1.76 � L � 5.0 W >1.6 MeV Newkirk and Walt [1968b]
4–8 � 10�10L10 a 3.0 � L � 5.0 W >.5 MeV Lanzerotti et al. [1970]
2.7 � 10�5M�.5L7.9 1.7 � L � 2.6 13.3–27.4 MeV/G Tomassian et al. [1972]
10 0:75KFR�10:2ð Þb L = 4 350–750 MeV/G Lanzerotti and Morgan [1973]
(2.23 ± 0.67)wd

�1.1±0.15c L = 6.0 50 keV–1.2 MeV Holzworth and Mozer [1979]
�.2–5.0 L = 5.3, L = 6.1 100 keV–1.6 MeV Chiu et al. [1988]
2.1 � 10�3 L

4

� �11:7
1:3
3.0 � L � 6.0 3–8 MeV Selesnick et al. [1997]

aD0 based on an assumed L10 radial dependence.
bBased on equation (13) and measured magnetic power spectrum; KFR � Fredricksburg magnetic index [see also

Brautigam and Albert, 2000].
cBased on equation (15) and measured electric power spectrum; wd is expressed as h�1.
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of frequencies is capable of supporting each of the three
resonant diffusion modes, w = mwd and w = (m ± 1)wd. As
may be intuitively expected, the resulting rates of diffusion
are larger than any single resonance acting alone. The
calculated value, DLL � 4.34 � 10�2 h�1, is consistent
with diffusion resulting from the simple sum of the reso-
nances, DLL = DLL

(m�1)
+ DLL

(m)
+ DLL

(m+1)
. This result suggests

that, in the outer zone, power at frequencies corresponding
to all three diffusive resonances must be considered in any
diffusive description of the radiation belts. It is also worth
noting that timescales in this case are very much in line with
the shortest observed times listed in Table 1.

[43] Electrons diffuse outward faster than inward when
all are initialized at the same L because of the strong
L-dependence of the diffusion coefficient. This effect pro-
duces a narrower gaussian width on the low-L side of the
right panels in Figure 9, most apparent for the fastest
diffusion case (d).
[44] A lower electron energy is required to satisfy the w =

(m + 1)wd resonance than the w = (m � 1)wd resonance at
fixed w. Increasing the range of w increases the range of
particle energies which satisfy each resonance. At later times
some electrons move inward and no longer satisfy the
highest energy (m � 1) resonance, while others move

Figure 9. Mean squared spread in time (left) and particle distribution at one hour (right) for an
ensemble of particles initially at L = 6.6 and W = 1 MeV, in a model magnetic field corresponding to
conditions during the recovery phase of the 24–26 September 1998 geomagnetic storm. Particles in panel
(a) move under the influence of azimuthal m = 2 waves in the frequency range 0.5–2.5 mHz, exciting
only the w = (m � 1)wd asymmetric resonance; those in panel (b) move under the influence of m = 2
waves in the frequency range 2.5–4.5 mHz, exciting only the w = mwd symmetric resonance; and
particles in panel (c) move under m = 2, 4.7–6.7 mHz waves, exciting only the w = (m + 1)wd asymmetric
resonance. Panel (d) shows the same ensemble moving under the influence of m = 2, 0.5–6.7 mHz
waves, showing the combined effect of all three resonant modes.
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outward and no longer satisfy the lowest energy (m + 1)
resonance. This results in a decrease in the diffusion rate at
later times seen in panel (d), not apparent on the two-hour
timescale in the first three panels because of the smaller
diffusion rate than in the combined case (d). It should also be
noted that a higher wave frequency was used for the (m + 1)
resonance in panel (c) than for the (m � 1) resonance in
panel (a). Increasing the wave frequency decreases the time
step for diffusion in a random walk process, and thus the
diffusion rate increases in panel (c) relative to (a).
[45] The flat spectral profile used in generating Figure 9

may be contrasted with that leading to equation (16). In
(16), the global electric field perturbation was assumed to
take a specific form, namely a sharp rise in the global
electric field strength followed by a slow decay (on a drift
timescale), corresponding to the impulsive action of the
solar wind on the magnetopause or as a result of substorm
activity. Such a perturbation has a spectral profile that varies
as wd

�2 [Schulz and Lanzerotti, 1974]. Diffusion in this case
is a result of both the intrinsic overlapping of resonances in
the wd

�2 profile corresponding to Figure 8 [Falthammar,
1965], as well as through the extrinsic randomness of the
impulsive action (e.g., the solar wind) driving the field
variations [Schulz and Lanzerotti, 1974]. In Figure 9, the
extrinsic randomness of the driving perturbation present in
equation (16) was simulated by running particles through a
variety of wave profiles, each profile differing randomly in
the initial phase of the frequency components, xm. It should
be noted, however, that combining both the intrinsic vari-
ability in the local fields seen by a particle (resulting from
the presence of multiple waves with differing frequencies)
with any extrinsic variability inherent in the driving pertur-
bation does not serve to increase the expected rate of
diffusion at a given spectral density P; rather each effect
contributes to the randomness in the guiding fields required
for the particle to behave in the stochastic, diffusive manner
evident in Figure 8.
[46] In a dipole field, the diffusion coefficients calcu-

lated from equation (14) are larger than those exhibited
by the particular example exhibited in Figure 9 by about
a factor of two. This difference can be attributed to the
fact that particles drifting in a compressed dipole field
will not always be drifting parallel to the azimuthal
electric field as assumed in the formulation of equation
(14), and will therefore gain less energy over the course
of a drift orbit (equation (4)). Numerical simulations
corresponding to the same frequency range and spectrum
as exhibited in (Figure 9d), but in a dipole field (not shown),
find DLL = 4.26 � 10�2 hr�1, very much in agreement with
the analytic values expected from equation (14).

5. Conclusion

[47] We have shown that it is possible to adiabatically
accelerate and transport magnetospheric electrons through a
drift-resonant interaction with ULF oscillations in the Pc-5
frequency range, both individually and in bulk. The rate of
energization increases with both increasing radial distortion
of the magnetic field, and increasing background convection
electric field. Both act to increase dr, the amplitude of drift-
orbit asymmetry, which affects the range of resonant inter-
action with the wave as described by equation (B6). In the

case of toroidal-mode waves, with an associated radial
electric field, energization occurs as a result of the electron
drifting radially outward on the dawn side and radially inward
on the dusk side as it interacts with the wave. With the
introduction of a static convection electric field, the phase-
space stability of the system is altered, allowing particles with
energies below the resonant energy to be accelerated.
[48] Poloidal field line resonances, with an associated Ef

and small parallel magnetic disturbance in the equatorial
plane, are able to efficiently accelerate single particles in a
nonaxisymmetric background magnetic field, without the
pitch angle scattering required for a symmetric dipole [Liu
et al., 1999; Summers and Ma, 2000]. In contrast to the
toroidal mode, the introduction of a convection electric field
to the poloidal-mode oscillations causes particles below the
resonant separatrix to lose energy. This result suggests that a
necessary condition for bulk electron acceleration by the
single-frequency drift resonant mechanism is that there be
more power in the toroidal than poloidal modes. While the
most prominent waves seen in situ in AMPTE/CCE spectro-
grams are toroidal field line resonances [Takahashi et al.,
1990], analysis of CRRES magnetometer data during SSC
events shows that all components are typically excited over
a broader frequency range during geomagnetic storms
[Miftakhova, 2001], consistent with findings by Nakamura
et al. [2001] for the 10 March 1998 storm from Equator-S
measurements.
[49] In the case of a continuum of frequencies, we find that

the resonant acceleration mechanism leads to a very efficient
form of radial diffusion. The results of Figure 9 suggest that
diffusion rates due to (m ± 1) resonant interaction with
poloidal-mode fields can be at least as important as those
of previous diffusion calculations, for example that repre-
sented by equation (15) and commonly used in diffusion
models of the radiation belts [e.g., Brautigam and Albert,
2000; Bourdarie et al., 1996; Beutier and Boscher, 1995].
Further, (Figure 9d) suggests that the various diffusion
modes are additive. Diffusion calculations hoping to capture
dynamic effects during periods of significant radial distor-
tion, such as storms associated with high-speed solar wind
streams and CME-magnetic cloud events, should incorpo-
rate dipole distortion effects in the model. For example,
Brautigam and Albert [2000] found that radial diffusion
could account for much of the variation seen in outer zone
fluxes during the 9 October 1990 magnetic storm if they
invoked RMS electric field amplitudes in equation (15) of up
to 1.6 mV/m. Since the combined modes of diffusion
discussed in this paper show greater efficiency than that
of the purely symmetric w = mwd resonance alone, and
since w = (m ± 1)wd diffusion increases with both the square
of the radial distortion and the square of the electric field
variation, the same diffusion rates could be obtained using
much more modest electric fields (and larger rates using
their assumed values) by allowing for resonant diffusion
effects in an asymmetric magnetic field. Furthermore, the
energy dependence of equations (10) and (12) can explain
greater diffusion rates at higher energies than result from
equation (15), as observed [Brautigam and Albert, 2000].
[50] Further work is needed to test the functional form of

the asymmetric (m ± 1) diffusion against observations. A
more extensive series of calculations such as seen in
Figure 9, but at a variety of initial Ls and energies, will
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verify the L, W, and power variations given by equations
(10) and (12); preliminary results show consistency [Eccles
et al., 2001]. Further analysis of the dynamics of a resonant
electron in a nonaxisymmetric field may lead to more
general expressions for the diffusion coefficients than those
simple approximations presented in equations (10) and (12)
[e.g., Brizard and Chan, 2001]. It should also be noted that
many of the analytic results in this paper are model-depend-
ent. For instance, in the equatorial plane the Mead [1964]
magnetic field model exhibits a radial distortion dr that goes
as r5 [Roederer, 1970], instead of the r4 dependence seen in
equation (A4). This would lead to an asymmetric radial
diffusion coefficient that varied as L13, not inconsistent with
the observations of Selesnick et al. [1997]. The equatorial
plane model described here, based on a compressed dipole,
appears adequate to investigate and describe the drift-
resonant acceleration of electrons in an asymmetric mag-
netic field, as well as provide suggestions for observational
evidence of such acceleration and a format to compare with
other theoretical models of diffusion and acceleration.
[51] Energetic electrons in the outer zone exhibit an

energy spectrum and spatial structure that can often be
well-explained in terms of diffusive processes acting on
trapped populations [Lyons and Thorne, 1973], but the
radial diffusion rates suggested by previous calculations
are too slow to account for the rapid variations often
observed in outer zone electron fluxes [Walt, 1996]. Blake
et al. [1997] showed strong correlation between solar wind
dynamic pressure, IMF orientation, and energetic electron
fluxes, and Li et al. [2001] have shown that nearly all
geosynchronous variation over a 2-year period can be
attributed to radial diffusion when source populations and
diffusion rates were tied to solar wind speed. Work byMann
et al. [1999] and Mathie and Mann [2000b] suggest that
during periods of high solar wind speed, enhanced ULF
wave power will be seen as a result of coupling to wave-
guide modes in the magnetospheric cavity. During such
periods, increased radial distortion of the magnetic field
may be expected as a result of larger solar wind dynamic
pressure acting on the magnetopause, enhancing the effect
of the compressed dipole resonances (section 2) and their
associated modes of radial diffusion (section 4). Observed
relativistic electron flux variations on timescales of hours to
�1–2 days, occurring during storms associated with high-
speed solar winds and enhanced ULF wave activity and in
the presence of a suitable electron source population, may
therefore be consistent with the drift-resonant acceleration
processes described in this paper.

Appendix A: Particle Motion in a Compressed
Dipole Magnetic Field

[52] In the absence of any perturbing forces, an equatorial
electron drifting adiabatically in the geomagnetic field will
move such that the guiding center drifts along contours of
constant magnetic field strength. From this condition, we
find that an electron drifting in a magnetic field given by
equation (1) will move along a path given by

r fð Þ ¼ LRE 1� b1b2

B0

L3 cosf
� ��1=3

ðA1Þ

where

L ¼ R3
E

r30
þ b1b2

B0

cosf0

� ��1=3

ðA2Þ

is a parameter specifying the drift shell of an equatorial
particle initially at radial distance r0 and azimuthal angle f0.
Equation (A1) indicates that the particle will be furthest
from the Earth at local noon and closest to the Earth at local
midnight, as expected. The radial displacement, dr = 1

2
(rnoon

� rmidnt), experienced by an electron through the course of
its motion can be written

dr ¼ LRE

2
1� b1b2

B0

L3

� ��1=3

� 1þ b1b2

B0

L3

� ��1=3
#
:

"
ðA3Þ

To first order in b1b2/B0, the radial displacement shows an
L4 dependence,

dr
RE

’ b1b2

3B0

L4; ðA4Þ

and equation (A1) can likewise be approximately written

r fð Þ ’ LRE þ dr cosf: ðA5Þ

[53] The drift frequency of a charged particle in a com-
pressed dipole will in general be lower than that in a pure
dipole. For the magnetic field model described above, the
corrected drift period can be obtained by integrating

H
df= _f

over one complete drift orbit. Using r _f ¼ Mc
geB

@B
@r , we find

Td ¼
geL2R2

E

3Mc

I
1þ b1L3=B0

1� b1b2
B0

L3 cosf
h i5=3 df ðA6Þ

where M is the relativistic first adiabatic invariant p2/2m0B,
c is the speed of light in a vacuum, g is the relativistic
correction factor, and e is the elementary charge. The
azimuthal drift velocity over the course of an orbit likewise
goes as

vf ¼ 3Mc

ge

1� b1b2
B0

L3 cosf
� �4=3

LRE 1þ b1
B0
L3

� � ; ðA7Þ

which, again to first order in b1b2/B0, can be written

vf ’ v� dv cosf ðA8Þ

with

v ¼ 3Mc

ge

1

LRE 1þ b1
B0
L3

� � ðA9Þ

dv ¼ 4Mc

ge

b1b2
B0

L3

LRE 1þ b1
B0
L3

� � : ðA10Þ

The parameter L appearing in these expressions is a third
adiabatic invariant-conserving quantity, analogous to the L*
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introduced by Roederer [1970]. Physically, L represents
approximately the average radial distance (in RE) of a
particle’s drift orbit, and is numerically equivalent to the
radial distance of the drift path at local dawn and local dusk.
We can relate L to L* using the definition L* = �2pB0

�RE
with

the fields (1), where � is the magnetic flux contained within
the particle drift orbit. The magnetic flux due to the dipole
term in (1) is

�1 ’
Z 1

LRE

Z 2p

0

B0R
3
E

r3
r dr df ¼ � 2pB0R

2
E

L ðA11Þ

(see, for example, Roederer [1970]), while the flux due to
the external terms is given by

�2 ’
Z LRE

0

Z 2p

0

b1 þ b1b2 cosfð Þr dr df ¼ pb1L2R2
E: ðA12Þ

Hence

L* ¼ L
1� b1L3

2B0

� � : ðA13Þ

Generally b1 � B0, so L ’ L* for reasonable values of L.
Note that for b1, b2 = 0, both L and L* reduce to the dipole
L-shell parameter McIlwain [1961], and equations (A6) and
(A7) express the particle drift period and azimuthal drift
velocity, respectively, in a pure magnetic dipole.

Appendix B: Resonant Interaction Width in
Energy

[54] For the case of purely toroidal-mode waves, analytic
calculations of relativistic electron interaction with the wave
have been made and are similar to those given by Chan et al.
[1989]. We begin with the relativistic expression for the
change in kinetic energy given by equation (4). The funda-
mental toroidal mode has a magnetic node at the equator
Dungey [1967], so for equatorial electrons dB/dt = 0.
Assuming unperturbed azimuthal motion, f = wdt + f0,
and radial motion of form (A5), then in the absence of a
convection electric field

dW

dt
¼

X1
m¼0

wd

dEm

2
cos �m�1t þ xm�1ð Þ� cos �mþ1t þ xmþ1

� ���
ðB1Þ

where we have defined dEm = edErmdr, �m±1 = (m ± 1)wd �
w, and xm±1 = (m ± 1)f0 + xrm. Integrating (B1), we find

W �W0 ¼
X1
m¼0

wd

dEm

2

sin �m�1t þ xm�1ð Þ
�m�1

�
sin �mþ1t þ xmþ1

� �
�mþ1

� �
;

ðB2Þ

from which we obtain the resonance condition equation (5).
Here the ‘‘±1’’ factor arises due to the m = 1 day-night
asymmetry in the compressed dipole. Note that for m � 2
there are two possible resonances: one for m + 1 and one for
m � 1. In the vicinity of one of these resonances, �m±1 � 0,

and we must first expand about the resonant energy W =
Em±1 before integrating (B1). There

�m
1 ’ � Em
1ð Þ þ W � Em
1ð Þ @�
@W

ðB3Þ

where the partial derivative is evaluated at the resonant
energy W = Em±1. At this energy, the first term in equation
(B3) is approximately zero. The corresponding resonant
term in equation (B1), with the substitution Z = �m±1t +
xm±1, becomes

W � Em
1ð ÞdW ¼ wd

dEm

2

@�

@W
cosZ dZ ðB4Þ

or

1

2
W � Em
1ð Þ2¼ wd

dEm

2

@�

@W
sinZ � sinZ0ð Þ: ðB5Þ

From this expression we can obtain the range in energy W ±
�Em±1 over which an electron experiences resonant
interaction with the wave. Noting that (sin Z � sin Z0)
can have a maximum value of 2, we get a half-width for the
‘‘m ± 1’’ resonance of

�Em
1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2edErmdr

m
 1ð Þ @ lnwdð Þ
@W

h i
W¼Em
1

vuut : ðB6Þ

Here the numerator represents the stronger driving effect of
larger wave amplitude and of larger drift-orbit asymmetry,
while the denominator shows the detuning effect of the
energy dependence of the drift frequency. It should be
noted that, in addition to the O[(W � Em±1)2] terms
truncated in (B3), (B6) is also approximate in that the effect
of the ‘‘m � 1’’ term from (B1), which, integrated, scales as
�m±1/�m�1, has been ignored.
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